skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gilad, Assaf_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Several hundreds of tons of gadolinium‐based contrast agents (GBCAs) are being dumped into the environment every year. Although macrocyclic GBCAs exhibit superior stability compared to their linear counterparts, we have found that the structural integrity of chelates is susceptible to ultraviolet light, regardless of configuration. In this study, we present a synthetic protein termed GLamouR that binds and reports gadolinium in an intensiometric manner. We then explore the extraction of gadolinium from MRI patient urine as a preventative measure for gadolinium pollution and investigate the viability of employing cost‐effective bioremediation techniques for treating contaminated water bodies. Based on promising results, we anticipate proteins such as GLamouR can be used for detecting and mining rare earth elements beyond gadolinium and hope to expand the biological toolbox for such applications. 
    more » « less
  2. Abstract Chemical exchange saturation transfer (CEST) MRI has been identified as a novel alternative to classical diagnostic imaging. Over the last several decades, many studies have been conducted to determine possible CEST agents, such as endogenously expressed compounds or proteins, that can be utilized to produce contrast with minimally invasive procedures and reduced or non‐existent levels of toxicity. In recent years there has been an increased interest in the generation of genetically engineered CEST contrast agents, typically based on existing proteins with CEST contrast or modified to produce CEST contrast. We have developed an in silico method for the evolution of peptide sequences to optimize CEST contrast and showed that these peptides could be combined to create de novo biosensors for CEST MRI. A single protein, superCESTide, was designed to be 198 amino acids. SuperCESTide was expressed inE. coliand purified with size exclusion chromatography. The magnetic transfer ratio asymmetry generated by superCESTide was comparable to levels seen in previous CEST reporters, such as protamine sulfate (salmon protamine) and human protamine. These data show that novel peptides with sequences optimized in silico for CEST contrast that utilize a more comprehensive range of amino acids can still produce contrast when assembled into protein units expressed in complex living environments. 
    more » « less
  3. At the beginning of the millennium, the first chemical exchange saturation transfer (CEST) contrast agents were bio‐organic molecules. However, later, metal‐based CEST agents (paraCEST agents) took center stage. This did not last too long as paraCEST agents showed limited translational potential. By contrast, the CEST field gradually became dominated by metal‐free CEST agents. One branch of research stemming from the original work by van Zijl and colleagues is the development of CEST agents based on polypeptides. Indeed, in the last 2 decades, tremendous progress has been achieved in this field. This includes the design of novel peptides as biosensors, genetically encoded recombinant as well as synthetic reporters. This was a result of extensive characterization and elucidation of the theoretical requirements for rational designing and engineering of such agents. Here, we provide an extensive overview of the evolution of more precise protein‐based CEST agents, review the rationalization of enzyme‐substrate pairs as CEST contrast enhancers, discuss the theoretical considerations to improve peptide selectivity, specificity and enhance CEST contrast. Moreover, we discuss the strong influence of synthetic biology on the development of the next generation of protein‐based CEST contrast agents. 
    more » « less